Equivariant graph neural networks for fast electron density estimation of molecules, liquids, and solids

Author:

Jørgensen Peter BjørnORCID,Bhowmik ArghyaORCID

Abstract

AbstractElectron density $$\rho (\overrightarrow{{{{\bf{r}}}}})$$ ρ ( r ) is the fundamental variable in the calculation of ground state energy with density functional theory (DFT). Beyond total energy, features and changes in $$\rho (\overrightarrow{{{{\bf{r}}}}})$$ ρ ( r ) distributions are often used to capture critical physicochemical phenomena in functional materials. We present a machine learning framework for the prediction of $$\rho (\overrightarrow{{{{\bf{r}}}}})$$ ρ ( r ) . The model is based on equivariant graph neural networks and the electron density is predicted at special query point vertices that are part of the message-passing graph, but only receive messages. The model is tested across multiple datasets of molecules (QM9), liquid ethylene carbonate electrolyte (EC) and LixNiyMnzCo(1-y-z)O2 lithium ion battery cathodes (NMC). For QM9 molecules, the accuracy of the proposed model exceeds typical variability in $$\rho (\overrightarrow{{{{\bf{r}}}}})$$ ρ ( r ) obtained from DFT done with different exchange-correlation functionals. The accuracy on all three datasets is beyond state of the art and the computation time is orders of magnitude faster than DFT.

Funder

Villum Fonden

Publisher

Springer Science and Business Media LLC

Subject

Computer Science Applications,Mechanics of Materials,General Materials Science,Modeling and Simulation

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3