Abstract
AbstractThe development of efficient thermal energy management devices such as thermoelectrics and barrier coatings often relies on compounds having low lattice thermal conductivity (κl). Here, we present the computational discovery of a large family of 628 thermodynamically stable quaternary chalcogenides, AMM′Q3 (A = alkali/alkaline earth/post-transition metals; M/M′ = transition metals, lanthanides; Q = chalcogens) using high-throughput density functional theory (DFT) calculations. We validate the presence of low κl in these materials by calculating κl of several predicted stable compounds using the Peierls–Boltzmann transport equation. Our analysis reveals that the low κl originates from the presence of either a strong lattice anharmonicity that enhances the phonon-scatterings or rattler cations that lead to multiple scattering channels in their crystal structures. Our thermoelectric calculations indicate that some of the predicted semiconductors may possess high energy conversion efficiency with their figure-of-merits exceeding 1 near 600 K. Our predictions suggest experimental research opportunities in the synthesis and characterization of these stable, low κl compounds.
Publisher
Springer Science and Business Media LLC
Subject
Computer Science Applications,Mechanics of Materials,General Materials Science,Modeling and Simulation
Cited by
46 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献