Abstract
Abstract3D nano-architectures presents a new paradigm in modern condensed matter physics with numerous applications in photonics, biomedicine, and spintronics. They are promising for the realization of 3D magnetic nano-networks for ultra-fast and low-energy data storage. Frustration in these systems can lead to magnetic charges or magnetic monopoles, which can function as mobile, binary information carriers. However, Dirac strings in 2D artificial spin ices bind magnetic charges, while 3D dipolar counterparts require cryogenic temperatures for their stability. Here, we present a micromagnetic study of a highly frustrated 3D artificial spin ice harboring tension-free Dirac strings with unbound magnetic charges at room temperature. We use micromagnetic simulations to demonstrate that the mobility threshold for magnetic charges is by 2 eV lower than their unbinding energy. By applying global magnetic fields, we steer magnetic charges in a given direction omitting unintended switchings. The introduced system paves the way toward 3D magnetic networks for data transport and storage.
Publisher
Springer Science and Business Media LLC
Subject
Computer Science Applications,Mechanics of Materials,General Materials Science,Modeling and Simulation
Reference73 articles.
1. Zhu, M., Ren, K. & Song, Z. Ovonic threshold switching selectors for three-dimensional stackable phase-change memory. MRS Bull. 44, 715–720 (2019).
2. Dieny, B. et al. Opportunities and challenges for spintronics in the microelectronics industry. Nat. Electron. 3, 446–459 (2020).
3. Harris, M. J., Bramwell, S. T., McMorrow, D. F., Zeiske, T. & Godfrey, K. W. Geometrical frustration in the ferromagnetic pyrochlore Ho2Ti2O7. Phys. Rev. Lett. 79, 4 (1997).
4. Bramwell, S. T. & Harris, M. J. Frustration in Ising-type spin models on the pyrochlore lattice. J. Phys. 10, L215–L220 (1998).
5. Ryzhkin, I. A. Magnetic relaxation in rare-earth oxide pyrochlores. J. Exp. Theor. Phys. 101, 481–486 (2005).
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献