High-performance bifunctional polarization switch chiral metamaterials by inverse design method

Author:

Liu Chuanbao,Bai Yang,Zhou Ji,Zhao Qian,Yang Yihao,Chen Hongsheng,Qiao Lijie

Abstract

Abstract Multifunctional polarization controlling plays an important role in modern photonics, but their designs toward broad bandwidths and high efficiencies are still rather challenging. Here, by applying the inverse design method of model-based theoretical paradigm, we design cascaded chiral metamaterials for different polarization controls in oppositely propagating directions and demonstrate their broadband and high-efficiency performance theoretically and experimentally. Started with the derivation of scattering matrix towards specified polarization control, a chiral metamaterial is designed as a meta-quarter-wave plate for the forward propagating linearly polarized wave, which converts the x- or y-polarized wave into a nearly perfect left- or right-handed circularly polarized wave; intriguingly, it also serves as a 45° polarization rotator for the backward propagating linearly polarized waves. This bifunctional metamaterial shows a high transmission as well as a broad bandwidth due to the Fabry–Perot-like interference effect. Using the similar approach, an abnormal broadband meta-quarter-wave plate is achieved to convert the forward x- and y-polarized or the backward y- and x-polarized waves into left- and right-handed circularly polarized waves with high transmission efficiencies. The integration of multiple functions in a single structure endows the cascaded chiral metamaterials with great interests for the high-efficiency polarization-controlled applications.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Computer Science Applications,Mechanics of Materials,General Materials Science,Modeling and Simulation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3