Machine learning of superconducting critical temperature from Eliashberg theory

Author:

Xie S. R.,Quan Y.,Hire A. C.ORCID,Deng B.ORCID,DeStefano J. M.ORCID,Salinas I.,Shah U. S.,Fanfarillo L.,Lim J.ORCID,Kim J.,Stewart G. R.,Hamlin J. J.,Hirschfeld P. J.,Hennig R. G.ORCID

Abstract

AbstractThe Eliashberg theory of superconductivity accounts for the fundamental physics of conventional superconductors, including the retardation of the interaction and the Coulomb pseudopotential, to predict the critical temperature Tc. McMillan, Allen, and Dynes derived approximate closed-form expressions for the critical temperature within this theory, which depends on the electron–phonon spectral function α2F(ω). Here we show that modern machine-learning techniques can substantially improve these formulae, accounting for more general shapes of the α2F function. Using symbolic regression and the SISSO framework, together with a database of artificially generated α2F functions and numerical solutions of the Eliashberg equations, we derive a formula for Tc that performs as well as Allen–Dynes for low-Tc superconductors and substantially better for higher-Tc ones. This corrects the systematic underestimation of Tc while reproducing the physical constraints originally outlined by Allen and Dynes. This equation should replace the Allen–Dynes formula for the prediction of higher-temperature superconductors.

Funder

U.S. Department of Energy

Publisher

Springer Science and Business Media LLC

Subject

Computer Science Applications,Mechanics of Materials,General Materials Science,Modeling and Simulation

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3