Abstract
AbstractWe investigate transport properties of ballistic magnetic Josephson junctions and establish that suppression of supercurrent is an intrinsic property of the junctions, even in absence of disorder. By studying the role of ferromagnet thickness, magnetization, and crystal orientation we show how the supercurrent decays exponentially with thickness and identify two mechanisms responsible for the effect: (i) large exchange splitting may gap out minority or majority carriers leading to the suppression of Andreev reflection in the junction, (ii) loss of synchronization between different modes due to the significant dispersion of the quasiparticle velocity with the transverse momentum. Our results for Nb/Ni/Nb junctions are in good agreement with recent experimental studies. Our approach combines density functional theory and the Bogoliubov-de Gennes model and opens a path for material composition optimization in magnetic Josephson junctions and superconducting magnetic spin valves.
Funder
U.S. Department of Energy, Office of Science through the Quantum Science Center (QSC), a National Quantum Information Science Research Center
Publisher
Springer Science and Business Media LLC
Subject
Computer Science Applications,Mechanics of Materials,General Materials Science,Modeling and Simulation
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献