Discovering plasticity models without stress data

Author:

Flaschel MoritzORCID,Kumar Siddhant,De Lorenzis LauraORCID

Abstract

AbstractWe propose an approach for data-driven automated discovery of material laws, which we call EUCLID (Efficient Unsupervised Constitutive Law Identification and Discovery), and we apply it here to the discovery of plasticity models, including arbitrarily shaped yield surfaces and isotropic and/or kinematic hardening laws. The approach is unsupervised, i.e., it requires no stress data but only full-field displacement and global force data; it delivers interpretable models, i.e., models that are embodied by parsimonious mathematical expressions discovered through sparse regression of a potentially large catalog of candidate functions; it is one-shot, i.e., discovery only needs one experiment. The material model library is constructed by expanding the yield function with a Fourier series, whereas isotropic and kinematic hardening is introduced by assuming a yield function dependency on internal history variables that evolve with the plastic deformation. For selecting the most relevant Fourier modes and identifying the hardening behavior, EUCLID employs physics knowledge, i.e., the optimization problem that governs the discovery enforces the equilibrium constraints in the bulk and at the loaded boundary of the domain. Sparsity promoting regularization is deployed to generate a set of solutions out of which a solution with low cost and high parsimony is automatically selected. Through virtual experiments, we demonstrate the ability of EUCLID to accurately discover several plastic yield surfaces and hardening mechanisms of different complexity.

Publisher

Springer Science and Business Media LLC

Subject

Computer Science Applications,Mechanics of Materials,General Materials Science,Modeling and Simulation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3