Machine learning predictions of irradiation embrittlement in reactor pressure vessel steels

Author:

Liu Yu-chen,Wu Henry,Mayeshiba Tam,Afflerbach BenjaminORCID,Jacobs RyanORCID,Perry Josh,George Jerit,Cordell Josh,Xia Jinyu,Yuan Hao,Lorenson Aren,Wu Haotian,Parker Matthew,Doshi Fenil,Politowicz AlexanderORCID,Xiao Linda,Morgan DaneORCID,Wells Peter,Almirall Nathan,Yamamoto Takuya,Odette G. Robert

Abstract

AbstractIrradiation increases the yield stress and embrittles light water reactor (LWR) pressure vessel steels. In this study, we demonstrate some of the potential benefits and risks of using machine learning models to predict irradiation hardening extrapolated to low flux, high fluence, extended life conditions. The machine learning training data included the Irradiation Variable for lower flux irradiations up to an intermediate fluence, plus the Belgian Reactor 2 and Advanced Test Reactor 1 for very high flux irradiations, up to very high fluence. Notably, the machine learning model predictions for the high fluence, intermediate flux Advanced Test Reactor 2 irradiations are superior to extrapolations of existing hardening models. The successful extrapolations showed that machine learning models are capable of capturing key intermediate flux effects at high fluence. Similar approaches, applied to expanded databases, could be used to predict hardening in LWRs under life-extension conditions.

Funder

National Science Foundation

U.S. Department of Energy

DOE | NE | Nuclear Energy University Program

Ministry of Science and Technology, Taiwan

Ministry of Education (Ministry of Education, Republic of China

U.S. Nuclear Regulatory Commission

Publisher

Springer Science and Business Media LLC

Subject

Computer Science Applications,Mechanics of Materials,General Materials Science,Modeling and Simulation

Reference28 articles.

1. Administration, U. S. E. I. U.S. Nuclear Industry - Energy Explained, Your Guide To Understanding Energy, http://www.eia.gov/energyexplained/index.cfm?page=nuclear_use (2016).

2. Administration, U. S. E. I. How old are U.S. nuclear power plants, and when was the last one built?, http://www.eia.gov/tools/faqs/faq.cfm?id=228&t=21 (2016).

3. Odette, G. R. et al. On the history and status of reactor pressure vessel steel ductile to brittle transition temperature shift prediction models. J. Nucl. Mater. 526, 151863 (2019).

4. Nanstad, R. K. & Server, W. L. Reactor Pressure Vessel Task of Light Water Reactor Sustainability Program: Initial Assessment of Thermal Annealing Needs and Challenges. Report No. ORNL/LTR-2011/351, https://www.energy.gov/ne/articles/reactorpressure-vessel-task-light-water-reactor-sustainability-program-initial (Oak Ridge, TN, 2011).

5. News, W. N. Rosatom launches annealing technology for VVER-1000 units, https://www.world-nuclear-news.org/Articles/Rosatom-launches-annealing-technology-for-VVER-100 (2018).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3