Advanced machine learning decision policies for diameter control of carbon nanotubes

Author:

Rao RahulORCID,Carpena-Núñez Jennifer,Nikolaev Pavel,Susner Michael A.,Reyes Kristofer G.ORCID,Maruyama Benji

Abstract

AbstractThe diameters of single-walled carbon nanotubes (SWCNTs) are directly related to their electronic properties, making diameter control highly desirable for a number of applications. Here we utilized a machine learning planner based on the Expected Improvement decision policy that mapped regions where growth was feasible vs. not feasible and further optimized synthesis conditions to selectively grow SWCNTs within a narrow diameter range. We maximized two ranges corresponding to Raman radial breathing mode frequencies around 265 and 225 cm−1 (SWCNT diameters around 0.92 and 1.06 nm, respectively), and our planner found optimal synthesis conditions within a hundred experiments. Extensive post-growth characterization showed high selectivity in the optimized growth experiments compared to the unoptimized growth experiments. Remarkably, our planner revealed significantly different synthesis conditions for maximizing the two diameter ranges in spite of their relative closeness. Our study shows the promise for machine learning-driven diameter optimization and paves the way towards chirality-controlled SWCNT growth.

Funder

United States Department of Defense | United States Air Force | AFMC | Air Force Office of Scientific Research

Publisher

Springer Science and Business Media LLC

Subject

Computer Science Applications,Mechanics of Materials,General Materials Science,Modeling and Simulation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3