Interpretable discovery of semiconductors with machine learning

Author:

Choubisa HitarthORCID,Todorović PetarORCID,Pina Joao M.ORCID,Parmar Darshan H.ORCID,Li Ziliang,Voznyy Oleksandr,Tamblyn Isaac,Sargent Edward H.

Abstract

AbstractMachine learning models of material properties accelerate materials discovery, reproducing density functional theory calculated results at a fraction of the cost1–6. To bridge the gap between theory and experiments, machine learning predictions need to be distilled in the form of interpretable chemical rules that can be used by experimentalists. Here we develop a framework to address this gap by combining evolutionary algorithm-powered search with machine-learning surrogate models. We then couple the search results with supervised learning and statistical testing. This strategy enables the efficient search of a materials space while providing interpretable design rules. We demonstrate its effectiveness by developing rules for the design of direct bandgap materials, stable UV emitters, and IR perovskite emitters. Finally, we conclusively show how DARWIN-generated rules are statistically more robust and applicable to a wide range of applications including the design of UV halide perovskites.

Publisher

Springer Science and Business Media LLC

Subject

Computer Science Applications,Mechanics of Materials,General Materials Science,Modeling and Simulation

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3