Convolutional neural network-assisted recognition of nanoscale L12 ordered structures in face-centred cubic alloys

Author:

Li YueORCID,Zhou XuyangORCID,Colnaghi TimoteoORCID,Wei Ye,Marek AndreasORCID,Li HongxiangORCID,Bauer Stefan,Rampp Markus,Stephenson Leigh T.ORCID

Abstract

AbstractNanoscale L12-type ordered structures are widely used in face-centered cubic (FCC) alloys to exploit their hardening capacity and thereby improve mechanical properties. These fine-scale particles are typically fully coherent with matrix with the same atomic configuration disregarding chemical species, which makes them challenging to be characterized. Spatial distribution maps (SDMs) are used to probe local order by interrogating the three-dimensional (3D) distribution of atoms within reconstructed atom probe tomography (APT) data. However, it is almost impossible to manually analyze the complete point cloud (>10 million) in search for the partial crystallographic information retained within the data. Here, we proposed an intelligent L12-ordered structure recognition method based on convolutional neural networks (CNNs). The SDMs of a simulated L12-ordered structure and the FCC matrix were firstly generated. These simulated images combined with a small amount of experimental data were used to train a CNN-based L12-ordered structure recognition model. Finally, the approach was successfully applied to reveal the 3D distribution of L12–type δ′–Al3(LiMg) nanoparticles with an average radius of 2.54 nm in a FCC Al-Li-Mg system. The minimum radius of detectable nanodomain is even down to 5 Å. The proposed CNN-APT method is promising to be extended to recognize other nanoscale ordered structures and even more-challenging short-range ordered phenomena in the near future.

Funder

Max-Planck-Gesellschaft

Publisher

Springer Science and Business Media LLC

Subject

Computer Science Applications,Mechanics of Materials,General Materials Science,Modeling and Simulation

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3