A rapid and effective method for alloy materials design via sample data transfer machine learning

Author:

Jiang Lei,Zhang Zhihao,Hu Hao,He Xingqun,Fu HuadongORCID,Xie Jianxin

Abstract

AbstractOne of the challenges in material design is to rapidly develop new materials or improve the performance of materials by utilizing the data and knowledge of existing materials. Here, a rapid and effective method of alloy material design via data transfer learning is proposed to efficiently design new alloys using existing data. A new type of aluminum alloy (E2 alloy) with ultra strength and high toughness previously developed by the authors is used as an example. An optimal three-stage solution-aging treatment process (T66R) was efficiently designed transferring 1053 pieces of process-property relationship data of existing AA7xxx commercial aluminum alloys. It realizes the substantial improvement of strength and plasticity of E2 alloy simultaneously, which is of great significance for lightweight of high-end equipment. Meanwhile, the microstructure analysis clarifies the mechanism of alloy performance improvement. This study shows that transferring the existing alloy data is an effective method to design new alloys.

Funder

National Natural Science Foundation of China

Key Science and Technology Foundation of Gansu Province

Key Scientific and Technological Project of Foshan City

Publisher

Springer Science and Business Media LLC

Subject

Computer Science Applications,Mechanics of Materials,General Materials Science,Modeling and Simulation

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3