Identification of advanced spin-driven thermoelectric materials via interpretable machine learning

Author:

Iwasaki Yuma,Sawada Ryohto,Stanev Valentin,Ishida Masahiko,Kirihara Akihiro,Omori Yasutomo,Someya Hiroko,Takeuchi Ichiro,Saitoh Eiji,Yorozu Shinichi

Abstract

Abstract Machine learning is becoming a valuable tool for scientific discovery. Particularly attractive is the application of machine learning methods to the field of materials development, which enables innovations by discovering new and better functional materials. To apply machine learning to actual materials development, close collaboration between scientists and machine learning tools is necessary. However, such collaboration has been so far impeded by the black box nature of many machine learning algorithms. It is often difficult for scientists to interpret the data-driven models from the viewpoint of material science and physics. Here, we demonstrate the development of spin-driven thermoelectric materials with anomalous Nernst effect by using an interpretable machine learning method called factorized asymptotic Bayesian inference hierarchical mixture of experts (FAB/HMEs). Based on prior knowledge of material science and physics, we were able to extract from the interpretable machine learning some surprising correlations and new knowledge about spin-driven thermoelectric materials. Guided by this, we carried out an actual material synthesis that led to the identification of a novel spin-driven thermoelectric material. This material shows the largest thermopower to date.

Funder

MEXT | JST | Precursory Research for Embryonic Science and Technology

MEXT | JST | Exploratory Research for Advanced Technology

SRC | Microelectronics Advanced Research Corporation

United States Department of Defense | Defense Advanced Research Projects Agency

Publisher

Springer Science and Business Media LLC

Subject

Computer Science Applications,Mechanics of Materials,General Materials Science,Modeling and Simulation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3