Coarse-grained molecular dynamics integrated with convolutional neural network for comparing shapes of temperature sensitive bottlebrushes

Author:

Joshi Soumil Y.ORCID,Singh Samrendra,Deshmukh Sanket A.ORCID

Abstract

AbstractQuantification of shape changes in nature-inspired soft material architectures of stimuli-sensitive polymers is critical for controlling their properties but is challenging due to their softness and flexibility. Here, we have computationally designed uniquely shaped bottlebrushes of a thermosensitive polymer, poly(N-isopropylacrylamide) (PNIPAM), by controlling the length of side chains along the backbone. Coarse-grained molecular dynamics simulations of solvated bottlebrushes were performed below and above the lower critical solution temperature of PNIPAM. Conventional analyses (free volume, asphericity, etc.) show that lengths of side chains and their immediate environments dictate the compactness and bending in these architectures. We further developed 100 unique convolutional neural network models that captured molecular-level features and generated a statistically significant quantification of the similarity between different shapes. Thus, our study provides insights into the shapes of complex architectures as well as a general method to analyze them. The shapes presented here may inspire the synthesis of new bottlebrushes.

Funder

National Science Foundation

Publisher

Springer Science and Business Media LLC

Subject

Computer Science Applications,Mechanics of Materials,General Materials Science,Modeling and Simulation

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3