Data-driven Bayesian model-based prediction of fatigue crack nucleation in Ni-based superalloys

Author:

Pinz Maxwell,Weber George,Stinville Jean Charles,Pollock Tresa,Ghosh SomnathORCID

Abstract

AbstractThis paper develops a Bayesian inference-based probabilistic crack nucleation model for the Ni-based superalloy René 88DT under fatigue loading. A data-driven, machine learning approach is developed, identifying underlying mechanisms driving crack nucleation. An experimental set of fatigue-loaded microstructures is characterized near crack nucleation sites using scanning electron microscopy and electron backscatter diffraction images for correlating the grain morphology and crystallography to the location of crack nucleation sites. A concurrent multiscale model, embedding experimental polycrystalline microstructural representative volume elements (RVEs) in a homogenized material, is developed for fatigue simulations. The RVE domain is modeled by a crystal plasticity finite element model. An anisotropic continuum plasticity model, obtained by homogenization of the crystal plasticity model, is used for the exterior domain. A Bayesian classification method is introduced to optimally select informative state variable predictors of crack nucleation. From this principal set of state variables, a simple scalar crack nucleation indicator is formulated.

Funder

NSF | ENG/OAD | Division of Civil, Mechanical and Manufacturing Innovation

United States Department of Defense | United States Air Force | AFMC | Air Force Office of Scientific Research

Publisher

Springer Science and Business Media LLC

Subject

Computer Science Applications,Mechanics of Materials,General Materials Science,Modeling and Simulation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3