Abstract
AbstractThe discovery of high-dielectric materials is crucial to increasing the efficiency of electronic devices and batteries. Here, we report three previously unexplored materials with very high dielectric constants (69 < ϵ < 101) and large band gaps (2.9 < Eg(eV) < 5.5) obtained by screening materials databases using statistical optimization algorithms aided by artificial neural networks (ANN). Two of these new dielectrics are mixed-anion compounds (Eu5SiCl6O4 and HoClO) and are shown to be thermodynamically stable against common semiconductors via phase diagram analysis. We also uncovered four other materials with relatively large dielectric constants (20 < ϵ < 40) and band gaps (2.3 < Eg(eV) < 2.7). While the ANN training-data are obtained from the Materials Project, the search-space consists of materials from the Open Quantum Materials Database (OQMD)—demonstrating a successful implementation of cross-database materials design. Overall, we report the dielectric properties of 17 materials calculated using ab initio calculations, that were selected in our design workflow. The dielectric materials with high-dielectric properties predicted in this work open up further experimental research opportunities.
Funder
DOE | Office of Science
Samsung Global Research Outreach Program
United States Department of Commerce | National Institute of Standards and Technology
Northwestern University
NSF | Directorate for Computer & Information Science & Engineering | Division of Computer and Network Systems
Publisher
Springer Science and Business Media LLC
Subject
Computer Science Applications,Mechanics of Materials,General Materials Science,Modeling and Simulation
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献