Identification of high-dielectric constant compounds from statistical design

Author:

Gopakumar AbhijithORCID,Pal KoushikORCID,Wolverton ChrisORCID

Abstract

AbstractThe discovery of high-dielectric materials is crucial to increasing the efficiency of electronic devices and batteries. Here, we report three previously unexplored materials with very high dielectric constants (69 < ϵ < 101) and large band gaps (2.9 < Eg(eV) < 5.5) obtained by screening materials databases using statistical optimization algorithms aided by artificial neural networks (ANN). Two of these new dielectrics are mixed-anion compounds (Eu5SiCl6O4 and HoClO) and are shown to be thermodynamically stable against common semiconductors via phase diagram analysis. We also uncovered four other materials with relatively large dielectric constants (20 < ϵ < 40) and band gaps (2.3 < Eg(eV) < 2.7). While the ANN training-data are obtained from the Materials Project, the search-space consists of materials from the Open Quantum Materials Database (OQMD)—demonstrating a successful implementation of cross-database materials design. Overall, we report the dielectric properties of 17 materials calculated using ab initio calculations, that were selected in our design workflow. The dielectric materials with high-dielectric properties predicted in this work open up further experimental research opportunities.

Funder

DOE | Office of Science

Samsung Global Research Outreach Program

United States Department of Commerce | National Institute of Standards and Technology

Northwestern University

NSF | Directorate for Computer & Information Science & Engineering | Division of Computer and Network Systems

Publisher

Springer Science and Business Media LLC

Subject

Computer Science Applications,Mechanics of Materials,General Materials Science,Modeling and Simulation

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3