Author:
Ghosh Sukanya,Ershadrad Soheil,Borisov Vladislav,Sanyal Biplab
Abstract
AbstractThe FenGeTe2 systems are recently discovered two-dimensional van-der-Waals materials, exhibiting magnetism at room temperature. The sub-systems belonging to FenGeTe2 class are special because they show site-dependent magnetic behavior. We focus on the critical evaluation of magnetic properties and electron correlation effects in FenGeTe2 (n = 3, 4, 5) (FGT) systems performing first-principles calculations. Three different ab initio approaches have been used primarily, viz., (i) standard density functional theory (GGA), (ii) incorporating static electron correlation (GGA + U) and (iii) inclusion of dynamic electron correlation effect (GGA + DMFT). Our results show that GGA + DMFT is the more accurate technique to correctly reproduce the magnetic interactions, experimentally observed transition temperatures and electronic properties. The inaccurate values of magnetic moments, exchange interactions obtained from GGA + U make this method inapplicable for the FGT family. Correct determination of magnetic properties for this class of materials is important since they are promising candidates for spin transport and spintronic applications at room temperature.
Publisher
Springer Science and Business Media LLC
Subject
Computer Science Applications,Mechanics of Materials,General Materials Science,Modeling and Simulation
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献