Machine learning property prediction for organic photovoltaic devices

Author:

Meftahi NastaranORCID,Klymenko Mykhailo,Christofferson Andrew J.ORCID,Bach UdoORCID,Winkler David A.ORCID,Russo Salvy P.ORCID

Abstract

Abstract Organic photovoltaic (OPV) materials are promising candidates for cheap, printable solar cells. However, there are a very large number of potential donors and acceptors, making selection of the best materials difficult. Here, we show that machine-learning approaches can leverage computationally expensive DFT calculations to estimate important OPV materials properties quickly and accurately. We generate quantitative relationships between simple and interpretable chemical signature and one-hot descriptors and OPV power conversion efficiency (PCE), open circuit potential (Voc), short circuit density (Jsc), highest occupied molecular orbital (HOMO) energy, lowest unoccupied molecular orbital (LUMO) energy, and the HOMO–LUMO gap. The most robust and predictive models could predict PCE (computed by DFT) with a standard error of ±0.5 for percentage PCE for both the training and test set. This model is useful for pre-screening potential donor and acceptor materials for OPV applications, accelerating design of these devices for green energy applications.

Publisher

Springer Science and Business Media LLC

Subject

Computer Science Applications,Mechanics of Materials,General Materials Science,Modeling and Simulation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3