Million-scale data integrated deep neural network for phonon properties of heuslers spanning the periodic table

Author:

Rodriguez Alejandro,Lin ChangpengORCID,Yang Hongao,Al-Fahdi MohammedORCID,Shen ChenORCID,Choudhary KamalORCID,Zhao YongORCID,Hu Jianjun,Cao Bingyang,Zhang Hongbin,Hu MingORCID

Abstract

AbstractExisting machine learning potentials for predicting phonon properties of crystals are typically limited on a material-to-material basis, primarily due to the exponential scaling of model complexity with the number of atomic species. We address this bottleneck with the developed Elemental Spatial Density Neural Network Force Field, namely Elemental-SDNNFF. The effectiveness and precision of our Elemental-SDNNFF approach are demonstrated on 11,866 full, half, and quaternary Heusler structures spanning 55 elements in the periodic table by prediction of complete phonon properties. Self-improvement schemes including active learning and data augmentation techniques provide an abundant 9.4 million atomic data for training. Deep insight into predicted ultralow lattice thermal conductivity (<1 Wm−1 K−1) of 774 Heusler structures is gained by p–d orbital hybridization analysis. Additionally, a class of two-band charge-2 Weyl points, referred to as “double Weyl points”, are found in 68% and 87% of 1662 half and 1550 quaternary Heuslers, respectively.

Publisher

Springer Science and Business Media LLC

Subject

Computer Science Applications,Mechanics of Materials,General Materials Science,Modeling and Simulation

Reference54 articles.

1. McGaughey, A. J. H., Jain, A., Kim, H. Y. & Fu, B. Phonon properties and thermal conductivity from first principles, lattice dynamics, and the Boltzmann transport equation. J. Appl. Phys. 125, 011101 (2019).

2. Xia, Y. et al. High-throughput study of lattice thermal conductivity in binary rocksalt and zinc blende compounds including higher-order anharmonicity. Phys. Rev. X 10, 41029 (2020).

3. Roekeghem, A., Carrete, J., Oses, C., Curtarolo, S. & Mingo, N. High-throughput computation of thermal conductivity of high-temperature solid phases: The case of oxide and fluoride perovskites. Phys. Rev. X 6, 1–10 (2016).

4. Ju, S. et al. Exploring diamondlike lattice thermal conductivity crystals via feature-based transfer learning. Phys. Rev. Mater. 5, 1–2 (2021).

5. Yamada, H. et al. Predicting materials properties with little data using shotgun transfer learning. ACS Cent. Sci. 5, 1717–1730 (2019).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3