A neural network model for high entropy alloy design

Author:

Wang JaeminORCID,Kwon HyeonseokORCID,Kim Hyoung SeopORCID,Lee Byeong-JooORCID

Abstract

AbstractA neural network model is developed to search vast compositional space of high entropy alloys (HEAs). The model predicts the mechanical properties of HEAs better than several other models. It’s because the special structure of the model helps the model understand the characteristics of constituent elements of HEAs. In addition, thermodynamics descriptors were utilized as input to the model so that the model predicts better by understanding the thermodynamic properties of HEAs. A conditional random search, which is good at finding local optimal values, was selected as the inverse predictor and designed two HEAs using the model. We experimentally verified that the HEAs have the best combination of strength and ductility and this proves the validity of the model and alloy design method. The strengthening mechanism of the designed HEAs is further discussed based on microstructure and lattice distortion effect. The present alloy design approach, specialized in finding multiple local optima, could help researchers design an infinite number of new alloys with interesting properties.

Funder

National Research Foundation of Korea

Publisher

Springer Science and Business Media LLC

Subject

Computer Science Applications,Mechanics of Materials,General Materials Science,Modeling and Simulation

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3