Accurate and scalable graph neural network force field and molecular dynamics with direct force architecture

Author:

Park Cheol Woo,Kornbluth MordechaiORCID,Vandermause JonathanORCID,Wolverton ChrisORCID,Kozinsky BorisORCID,Mailoa Jonathan P.ORCID

Abstract

AbstractRecently, machine learning (ML) has been used to address the computational cost that has been limiting ab initio molecular dynamics (AIMD). Here, we present GNNFF, a graph neural network framework to directly predict atomic forces from automatically extracted features of the local atomic environment that are translationally-invariant, but rotationally-covariant to the coordinate of the atoms. We demonstrate that GNNFF not only achieves high performance in terms of force prediction accuracy and computational speed on various materials systems, but also accurately predicts the forces of a large MD system after being trained on forces obtained from a smaller system. Finally, we use our framework to perform an MD simulation of Li7P3S11, a superionic conductor, and show that resulting Li diffusion coefficient is within 14% of that obtained directly from AIMD. The high performance exhibited by GNNFF can be easily generalized to study atomistic level dynamics of other material systems.

Funder

U.S. Department of Energy

Bosch Research and Technology Center Toyota Research Institute

Funding sources are the same as Dr. Jonathan Mailoa

United States Department of Commerce | National Institute of Standards and Technology

DOE | Advanced Research Projects Agency - Energy

Publisher

Springer Science and Business Media LLC

Subject

Computer Science Applications,Mechanics of Materials,General Materials Science,Modelling and Simulation

Cited by 85 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3