Abstract
AbstractThe relationship between electron–phonon (e-ph) interactions and charge-density-wave (CDW) order in the bismuthate family of high-temperature superconductors remains unresolved. We address this question using nonperturbative hybrid Monte Carlo calculations for the parent compound BaBiO3. Our model includes the Bi 6sand O 2pσorbitals and coupling to the Bi-O bond-stretching branch of optical phonons via modulations of the Bi-O hopping integral. We simulate three-dimensional clusters of up to 4000 orbitals, with input model parameters taken from ab initio electronic structure calculations and a phonon energy ℏΩ0 = 60 meV. Our results demonstrate that the coupling to the bond-stretching modes is sufficient to reproduce the CDW transition in this system, despite a relatively small dimensionless coupling. We also find that the transition deviates from the weak-coupling Peierls’ picture. This work demonstrates that off-diagonale-ph interactions in orbital space are vital in establishing the bismuthate phase diagram.
Funder
U.S. Department of Energy
Publisher
Springer Science and Business Media LLC
Subject
Computer Science Applications,Mechanics of Materials,General Materials Science,Modeling and Simulation
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献