Abstract
AbstractExisting hot sintering models based on molecular dynamics focus on single-crystal alloys. This work proposes a new multiparticle model based on molecular dynamics to investigate coalescence kinetics during the hot-pressed sintering of a polycrystalline Al0.3CoCrFeNi high-entropy alloy. The accuracy and effectiveness of the multiparticle model are verified by a phase-field model. Using this model, it is found that when the particle contact zones undergo pressure-induced evolution into exponential power creep zones, the occurrences of phenomena, such as necking, pore formation/filling, dislocation accumulation/decomposition, and particle rotation/rearrangement are accelerated. Based on tensile test results, Young’s modulus of the as-sintered Al0.3CoCrFeNi high-entropy alloy is calculated to be 214.11 ± 1.03 GPa, which deviates only 0.82% from the experimental value, thus further validating the feasibility and accuracy of the multiparticle model.
Funder
National Natural Science Foundation of China
Key Research and Development Program of Shanxi Province
Publisher
Springer Science and Business Media LLC
Subject
Computer Science Applications,Mechanics of Materials,General Materials Science,Modeling and Simulation
Cited by
39 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献