Abstract
AbstractReactive force fields have enabled an atomic level description of a wide range of phenomena, from chemistry at extreme conditions to the operation of electrochemical devices and catalysis. While significant insight and semi-quantitative understanding have been drawn from such work, the accuracy of reactive force fields limits quantitative predictions. We developed a neural network reactive force field (NNRF) for CHNO systems to describe the decomposition and reaction of the high-energy nitramine 1,3,5-trinitroperhydro-1,3,5-triazine (RDX). NNRF was trained using energies and forces of a total of 3100 molecules (11,941 geometries) and 15 condensed matter systems (32,973 geometries) obtained from density functional theory calculations with semi-empirical corrections to dispersion interactions. The training set is generated via a semi-automated iterative procedure that enables refinement of the NNRF until a desired accuracy is attained. The root mean square (RMS) error of NNRF on a testing set of configurations describing the reaction of RDX is one order of magnitude lower than current state of the art potentials.
Funder
the US Office of Naval Research, Multidisciplinary University Research Initiatives (MURI) Program
School of Materials Engineering at Purdue University and the Donors of the American Chemical Society Petroleum Research Fund
Publisher
Springer Science and Business Media LLC
Subject
Computer Science Applications,Mechanics of Materials,General Materials Science,Modelling and Simulation
Cited by
53 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献