Photovoltaphores: pharmacophore models for identifying metal-free dyes for dye-sensitized solar cells

Author:

Binyamin Hadar,Senderowitz HanochORCID

Abstract

AbstractDye-sensitized solar cells (DSSCs) are cost-effective, sustainable, and versatile electricity producers, allowing them to be incorporated into a variety of devices. In this work, we explore the usage of pharmacophore modeling to identify metal-free dyes for DSSCs by means of virtual screening. Pharmacophore models were built based on experimentally tested sensitizers. Virtual screening was performed against a large dataset of commercially available compounds taken from the ZINC15 library and identified multiple virtual hits. A subset of these hits was subjected to DFT and time-dependent-DFT calculations leading to the identification of two compounds, TSC6 and ASC5, with appropriate molecular orbitals energies, favorable localization, and reasonable absorption UV–vis spectra. These results suggest that pharmacophore models, traditionally used in drug discovery and lead optimization, successfully predicted electronic properties, which are in agreement with the theoretical requirements for sensitizers. Such models may therefore find additional usages as modeling tools in materials sciences.

Publisher

Springer Science and Business Media LLC

Subject

Computer Science Applications,Mechanics of Materials,General Materials Science,Modeling and Simulation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3