Multi-reward reinforcement learning based development of inter-atomic potential models for silica

Author:

Koneru Aditya,Chan HenryORCID,Manna Sukriti,Loeffler Troy D.,Dhabal DebdasORCID,Bertolazzo Andressa A.ORCID,Molinero Valeria,Sankaranarayanan Subramanian K. R. S.ORCID

Abstract

AbstractSilica is an abundant and technologically attractive material. Due to the structural complexities of silica polymorphs coupled with subtle differences in Si–O bonding characteristics, the development of accurate models to predict the structure, energetics and properties of silica polymorphs remain challenging. Current models for silica range from computationally efficient Buckingham formalisms (BKS, CHIK, Soules) to reactive (ReaxFF) and more recent machine-learned potentials that are flexible but computationally costly. Here, we introduce an improved formalism and parameterization of BKS model via a multireward reinforcement learning (RL) using an experimental training dataset. Our model concurrently captures the structure, energetics, density, equation of state, and elastic constants of quartz (equilibrium) as well as 20 other metastable silica polymorphs. We also assess its ability in capturing amorphous properties and highlight the limitations of the BKS-type functional forms in simultaneously capturing crystal and amorphous properties. We demonstrate ways to improve model flexibility and introduce a flexible formalism, machine-learned ML-BKS, that outperforms existing empirical models and is on-par with the recently developed 50 to 100 times more expensive Gaussian approximation potential (GAP) in capturing the experimental structure and properties of silica polymorphs and amorphous silica.

Funder

U.S. Department of Energy

Publisher

Springer Science and Business Media LLC

Subject

Computer Science Applications,Mechanics of Materials,General Materials Science,Modeling and Simulation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3