Abstract
AbstractThe coupling of excited states and ionic dynamics is the basic and challenging point for the materials response at extreme conditions. In the laboratory, the intense laser produces transient nature and complexity with highly nonequilibrium states, making it extremely difficult and interesting for both experimental measurements and theoretical methods. With the inclusion of laser-excited states, we extend an ab initio method into the direct simulations of whole laser-driven microscopic dynamics from solid to liquid. We construct the framework of combining the electron-temperature-dependent deep neural-network potential energy surface with a hybrid atomistic-continuum approach, controlling non-adiabatic energy exchange and atomistic dynamics, which enables consistent interpretation of experimental data. By large-scale ab initio simulations, we demonstrate that the nonthermal effects introduced by hot electrons play a dominant role in modulating the lattice dynamics, thermodynamic pathway, and structural transformation. We highlight that the present work provides a path to realistic computational studies of laser-driven processes, thus bridging the gap between experiments and simulations.
Funder
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Subject
Computer Science Applications,Mechanics of Materials,General Materials Science,Modeling and Simulation
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献