Learning from models: high-dimensional analyses on the performance of machine learning interatomic potentials

Author:

Liu YunshengORCID,Mo YifeiORCID

Abstract

AbstractMachine learning interatomic potential (MLIP) has been widely adopted for atomistic simulations. While errors and discrepancies for MLIPs have been reported, a comprehensive examination of the MLIPs’ performance over a broad spectrum of material properties has been lacking. This study introduces an analysis process comprising model sampling, benchmarking, error evaluations, and multi-dimensional statistical analyses on an ensemble of MLIPs for prediction errors over a diverse range of properties. By carrying out this analysis on 2300 MLIP models based on six different MLIP types, several properties that pose challenges for the MLIPs to achieve small errors are identified. The Pareto front analyses on two or more properties reveal the trade-offs in different properties of MLIPs, underscoring the difficulties of achieving low errors for a large number of properties simultaneously. Furthermore, we propose correlation graph analyses to characterize the error performances of MLIPs and to select the representative properties for predicting other property errors. This analysis process on a large dataset of MLIP models sheds light on the underlying complexities of MLIP performance, offering crucial guidance for the future development of MLIPs with improved predictive accuracy across an array of material properties.

Funder

National Science Foundation

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3