Atomistic simulation assisted error-inclusive Bayesian machine learning for probabilistically unraveling the mechanical properties of solidified metals

Author:

Mahata A.ORCID,Mukhopadhyay T.ORCID,Chakraborty S.ORCID,Asle Zaeem M.ORCID

Abstract

AbstractSolidification phenomenon has been an integral part of the manufacturing processes of metals, where the quantification of stochastic variations and manufacturing uncertainties is critically important. Accurate molecular dynamics (MD) simulations of metal solidification and the resulting properties require excessive computational expenses for probabilistic stochastic analyses where thousands of random realizations are necessary. The adoption of inadequate model sizes and time scales in MD simulations leads to inaccuracies in each random realization, causing a large cumulative statistical error in the probabilistic results obtained through Monte Carlo (MC) simulations. In this work, we present a machine learning (ML) approach, as a data-driven surrogate to MD simulations, which only needs a few MD simulations. This efficient yet high-fidelity ML approach enables MC simulations for full-scale probabilistic characterization of solidified metal properties considering stochasticity in influencing factors like temperature and strain rate. Unlike conventional ML models, the proposed hybrid polynomial correlated function expansion here, being a Bayesian ML approach, is data efficient. Further, it can account for the effect of uncertainty in training data by exploiting mean and standard deviation of the MD simulations, which in principle addresses the issue of repeatability in stochastic simulations with low variance. Stochastic numerical results for solidified aluminum are presented here based on complete probabilistic uncertainty quantification of mechanical properties like Young’s modulus, yield strength and ultimate strength, illustrating that the proposed error-inclusive data-driven framework can reasonably predict the properties with a significant level of computational efficiency.

Funder

National Science Foundation

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3