Predicting interfacial thermal resistance by machine learning

Author:

Wu Yen-JuORCID,Fang Lei,Xu Yibin

Abstract

AbstractVarious factors affect the interfacial thermal resistance (ITR) between two materials, making ITR prediction a high-dimensional mathematical problem. Machine learning is a cost-effective method to address this. Here, we report ITR predictive models based on experimental data. The physical, chemical, and material properties of ITR are categorized into three sets of descriptors, and three algorithms are used for the models. Those descriptors assist the models in reducing the mismatch between predicted and experimental values and reaching high predictive performance of 96%. Over 80,000 material systems composed of 293 materials were inputs for predictions. Among the top-100 high-ITR predictions by the three different algorithms, 25 material systems are repeatedly predicted by at least two algorithms. One of the 25 material systems, Bi/Si achieved the ultra-low thermal conductivity in our previous work. We believe that the predicted high-ITR material systems are potential candidates for thermoelectric applications. This study proposed a strategy for material exploration for thermal management by means of machine learning.

Publisher

Springer Science and Business Media LLC

Subject

Computer Science Applications,Mechanics of Materials,General Materials Science,Modeling and Simulation

Cited by 95 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3