Automated design of hybrid halide perovskite monolayers for band gap engineering

Author:

Hu JieORCID,Wang JianweiORCID,Chen HaiyuanORCID,Niu XiaobinORCID

Abstract

AbstractThe recent experimental confirmation of perovskite monolayers has sparked ongoing efforts in their prediction and synthesis, showcasing their flexible tunable band gap and potential in advanced functional devices. Although large-scale computational designs have been successfully performed for inorganic perovskite monolayers, the complexity introduced by organic cations hinders the same approaches applied to the hybrid halide perovskite monolayers. To address this challenge, we have proposed a high-throughput first-principles computational workflow that automates the design of hybrid halide perovskite monolayers. We strategically reduce the complexity of the configurations by analyzing the orientation of cations and the structural symmetry. Over 400 hybrid halide perovskite monolayers have been designed, and their structures and fundamental properties are stored in the database. Correlation analyses show a strong correlation between band gaps and metal-halogen-metal bond angles or metal-halogen bond lengths, consistent with prior studies for bulk and layered perovskites. The underlying physics that the band gap is modulated by the antibonding in the metal-halogen bond makes band gap engineering of hybrid halide perovskite monolayers feasible. Accordingly, initial research on lateral heterojunctions and solar cells has been conducted to explore the potential practical applications of the designed hybrid halide perovskite monolayers. Our study lays the foundation for further exploration of hybrid halide perovskite monolayers and highlights promising opportunities for their potential applications in electronic and optical devices.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3