Bayesian optimization with experimental failure for high-throughput materials growth

Author:

Wakabayashi Yuki K.ORCID,Otsuka Takuma,Krockenberger Yoshiharu,Sawada Hiroshi,Taniyasu Yoshitaka,Yamamoto Hideki

Abstract

AbstractA crucial problem in achieving innovative high-throughput materials growth with machine learning, such as Bayesian optimization (BO), and automation techniques has been a lack of an appropriate way to handle missing data due to experimental failures. Here, we propose a BO algorithm that complements the missing data in optimizing materials growth parameters. The proposed method provides a flexible optimization algorithm that searches a wide multi-dimensional parameter space. We demonstrate the effectiveness of the method with simulated data as well as in its implementation for actual materials growth, namely machine-learning-assisted molecular beam epitaxy (ML-MBE) of SrRuO3, which is widely used as a metallic electrode in oxide electronics. Through the exploitation and exploration in a wide three-dimensional parameter space, while complementing the missing data, we attained tensile-strained SrRuO3 film with a high residual resistivity ratio of 80.1, the highest among tensile-strained SrRuO3 films ever reported, in only 35 MBE growth runs.

Publisher

Springer Science and Business Media LLC

Subject

Computer Science Applications,Mechanics of Materials,General Materials Science,Modeling and Simulation

Reference54 articles.

1. Mueller, T. Kusne, A. G. & Ramprasad, R. in Reviews in Computational Chemistry, (eds Parrill, A. L. & Lipkowitz, K. B.) 29 (Wiley, 2015).

2. Lookman, T. Alexander, F. J. & Rajan, K. Information Science for Materials Discovery and Design (Springer, 2016).

3. Burnaex, E. & Panov, M. Statistical Learning and Data Sciences (Springer, 2015).

4. Agrawal, A. & Choudhary, A. N. Materials informatics and big data: Realization of the “fourth paradigm” of science in materials science. APL Mater. 4, 053208 (2016).

5. Rajan, K. Materials informatics. Mater. Today 8, 38–45 (2005).

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3