Simulating fluid flow in complex porous materials by integrating the governing equations with deep-layered machines

Author:

Kamrava ServehORCID,Sahimi MuhammadORCID,Tahmasebi PejmanORCID

Abstract

AbstractFluid flow in heterogeneous porous media arises in many systems, from biological tissues to composite materials, soil, wood, and paper. With advances in instrumentations, high-resolution images of porous media can be obtained and used directly in the simulation of fluid flow. The computations are, however, highly intensive. Although machine learning (ML) algorithms have been used for predicting flow properties of porous media, they lack a rigorous, physics-based foundation and rely on correlations. We introduce an ML approach that incorporates mass conservation and the Navier–Stokes equations in its learning process. By training the algorithm to relatively limited data obtained from the solutions of the equations over a time interval, we show that the approach provides highly accurate predictions for the flow properties of porous media at all other times and spatial locations, while reducing the computation time. We also show that when the network is used for a different porous medium, it again provides very accurate predictions.

Publisher

Springer Science and Business Media LLC

Subject

Computer Science Applications,Mechanics of Materials,General Materials Science,Modelling and Simulation

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3