Abstract
AbstractHeterogeneous catalysts constitute a crucial component of many industrial processes, and to gain an understanding of the atomic-scale features of such catalysts, ab initio density functional theory is widely employed. Recently, growing computational power has permitted the extension of such studies to complex reaction networks involving either high adsorbate coverages or multidentate adsorbates, which bind to the surface through multiple atoms. Describing all possible adsorbate configurations for such systems, however, is often not possible based on chemical intuition alone. To systematically treat such complexities, we present a generalized Python-based graph theory approach to convert atomic scale models into undirected graph representations. These representations, when combined with workflows such as evolutionary algorithms, can systematically generate high coverage adsorbate models and classify unique minimum energy multidentate adsorbate configurations for surfaces of low symmetry, including multi-elemental alloy surfaces, steps, and kinks. Two case studies are presented which demonstrate these capabilities; first, an analysis of a coverage-dependent phase diagram of absorbate NO on the Pt3Sn(111) terrace surface, and second, an investigation of adsorption energies, together with identifying unique minimum energy configurations, for the reaction intermediate propyne (CHCCH3*) adsorbed on a PdIn(021) step surface. The evolutionary algorithm approach reproduces high coverage configurations of NO on Pt3Sn(111) using only 15% of the number of simulations required for a brute force approach. Furthermore, the screening of potentially hundreds of multidentate adsorbates is shown to be possible without human intervention. The strategy presented is quite general and can be applied to a spectrum of complex atomic systems.
Funder
U.S. Department of Energy
Publisher
Springer Science and Business Media LLC
Subject
Computer Science Applications,Mechanics of Materials,General Materials Science,Modeling and Simulation
Cited by
44 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献