Abstract
AbstractWhile machine learning (ML) has shown increasing effectiveness in optimizing materials properties under known physics, its application in discovering new physics remains challenging due to its interpolative nature. In this work, we demonstrate a general-purpose adaptive ML-accelerated search process that can discover unexpected lattice thermal conductivity (κl) enhancement in aperiodic superlattices (SLs) as compared to periodic superlattices, with implications for thermal management of multilayer-based electronic devices. We use molecular dynamics simulations for high-fidelity calculations of κl, along with a convolutional neural network (CNN) which can rapidly predict κl for a large number of structures. To ensure accurate prediction for the target unknown SLs, we iteratively identify aperiodic SLs with structural features leading to locally enhanced thermal transport and include them as additional training data for the CNN. The identified structures exhibit increased coherent phonon transport owing to the presence of closely spaced interfaces.
Funder
United States Department of Defense | Defense Advanced Research Projects Agency
Purdue University
Publisher
Springer Science and Business Media LLC
Subject
Computer Science Applications,Mechanics of Materials,General Materials Science,Modeling and Simulation
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献