Abstract
AbstractCu3SbSe3 that exhibits distinct liquid-like sublattice due to the heterogeneous bonding environment has emerged as a promising low cost superionic semiconductor with intrinsic ultralow thermal conductivity. However, the relationship between atomic dynamics resulting in liquid-like diffusion and anomalous phonon transport properties remains poorly understood. Herein, combing ab initio molecular dynamics with temperature-dependent Raman measurements, we have performed a thorough investigation on the lattice dynamics of Cu3SbSe3. Superionic transition is unveiled for both structurally inequivalent Cu atoms at elevated temperatures, while the Se-formed tetrahedral framework can simultaneously maintain. An intermediate state of Cu3SbSe3 through the mixture of quasi-1D/2D Cu nearest-neighbor vacancy hopping is discovered below the superionic transition temperature. Our results also manifest that phonons predominately involved with Cu contributions along diffusion channels have been strongly scattered during the superionic transition, whereas the liquid-like diffusion of Cu is too slow to completely breakdown the propagation of all transverse phonon modes. The insight provided by this work into the atomic dynamics and phonon scattering relationship may pave the way for further phonon engineering of Cu3SbSe3 and related superionic materials.
Funder
National Natural Science Foundation of China
Environment and Conservation Fund
Research Grants Council, University Grants Committee
the Science, Technology and Innovation Commission of ShenzhenMunicipality
Publisher
Springer Science and Business Media LLC
Subject
Computer Science Applications,Mechanics of Materials,General Materials Science,Modeling and Simulation
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献