Abstract
AbstractThermoelectric materials can be potentially applied to waste heat recovery and solid-state cooling because they allow a direct energy conversion between heat and electricity and vice versa. The accelerated materials design based on machine learning has enabled the systematic discovery of promising materials. Herein we proposed a successful strategy to discover and design a series of promising half-Heusler thermoelectric materials through the iterative combination of unsupervised machine learning with the labeled known half-Heusler thermoelectric materials. Subsequently, optimized zT values of ~0.5 at 925 K for p-type Sc0.7Y0.3NiSb0.97Sn0.03 and ~0.3 at 778 K for n-type Sc0.65Y0.3Ti0.05NiSb were experimentally achieved on the same parent ScNiSb.
Publisher
Springer Science and Business Media LLC
Subject
Computer Science Applications,Mechanics of Materials,General Materials Science,Modeling and Simulation
Cited by
39 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献