Tailored morphology and highly enhanced phonon transport in polymer fibers: a multiscale computational framework

Author:

Lin ShangchaoORCID,Cai Zhuangli,Wang Yang,Zhao Lingling,Zhai ChenxiORCID

Abstract

AbstractAlthough tremendous efforts have been devoted to enhance thermal conductivity in polymer fibers, correlation between the thermal-drawing conditions and the resulting chain alignment, crystallinity, and phonon transport properties have remained obscure. Using a carefully trained coarse-grained force field, we systematically interrogate the thermal-drawing conditions of bulk polyethylene samples using large-scale molecular dynamics simulations. An optimal combination of moderate drawing temperature and strain rate is found to achieve highest degrees of chain alignment, crystallinity, and the resulting thermal conductivity. Such combination is rationalized by competing effects in viscoelastic relaxation and condensed to the Deborah number, a predictive metric for the thermal-drawing protocols, showing a delicate balance between stress localizations and chain diffusions. Upon tensile deformation, the thermal conductivity of amorphous polyethylene is enhanced to 80% of the theoretical limit, that is, its pure crystalline counterpart. An effective-medium-theory model, based on the serial-parallel heat conducting nature of semicrystalline polymers, is developed here to predict the impacts from both chain alignment and crystallinity on thermal conductivity. The enhancement in thermal conductivity is mainly attributed to the increases in the intrinsic phonon mean free path and the longitudinal group velocity. This work provides fundamental insights into the polymer thermal-drawing process and establishes a complete process–structure–property relationship for enhanced phonon transport in all-organic electronic devices and efficiency of polymeric heat dissipaters.

Funder

ACS | American Chemical Society Petroleum Research Fund

Shanghai Jiao Tong University

Publisher

Springer Science and Business Media LLC

Subject

Computer Science Applications,Mechanics of Materials,General Materials Science,Modeling and Simulation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3