Machine learned interatomic potentials using random features

Author:

Dhaliwal Gurjot,Nair Prasanth B.,Singh Chandra VeerORCID

Abstract

AbstractWe present a method to model interatomic interactions such as energy and forces in a computationally efficient way. The proposed model approximates the energy/forces using a linear combination of random features, thereby enabling fast parameter estimation by solving a linear least-squares problem. We discuss how random features based on stationary and non-stationary kernels can be used for energy approximation and provide results for three classes of materials, namely two-dimensional materials, metals and semiconductors. Force and energy predictions made using the proposed method are in close agreement with density functional theory calculations, with training time that is 96% lower than standard kernel models. Molecular Dynamics calculations using random features based interatomic potentials are shown to agree well with experimental and density functional theory values. Phonon frequencies as computed by random features based interatomic potentials are within 0.1% of the density functional theory results. Furthermore, the proposed random features-based potential addresses scalability issues encountered in this class of machine learning problems.

Funder

Natural Sciences and Engineering Research Council of Canada, Hart Professorship, Canada Research Chairs program

Natural Sciences and Engineering Research Council of Canada, Canada Research Chairs program

Publisher

Springer Science and Business Media LLC

Subject

Computer Science Applications,Mechanics of Materials,General Materials Science,Modeling and Simulation

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3