Abstract
AbstractAmong micro-scale imaging technologies of materials, X-ray micro-computed tomography has evolved as most popular choice, even though it is restricted to limited field-of-views and long acquisition times. With recent progress in small-angle X-ray scattering these downsides of conventional absorption-based computed tomography have been overcome, allowing complete analysis of the micro-architecture for samples in the dimension of centimetres in a matter of minutes. These advances have been triggered through improved X-ray optical elements and acquisition methods. However, it has not yet been shown how to effectively transfer this small-angle X-ray scattering data into a numerical model capable of accurately predicting the actual material properties. Here, a method is presented to numerically predict mechanical properties of a carbon fibre-reinforced polymer based on imaging data with a voxel-size of 100 μm corresponding to approximately fifteen times the fibre diameter. This extremely low resolution requires a completely new way of constructing the material’s constitutive law based on the fibre orientation, the X-ray scattering anisotropy, and the X-ray scattering intensity. The proposed method combining the advances in X-ray imaging and the presented material model opens for an accurate tensile modulus prediction for volumes of interest between three to six orders of magnitude larger than those conventional carbon fibre orientation image-based models can cover.
Funder
EC | Horizon 2020 Framework Programme
Paul Scherrer Institut
Publisher
Springer Science and Business Media LLC
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献