Using statistical learning to predict interactions between single metal atoms and modified MgO(100) supports

Author:

Liu Chun-YenORCID,Zhang Shijia,Martinez Daniel,Li MengORCID,Senftle Thomas P.ORCID

Abstract

AbstractMetal/oxide interactions mediated by charge transfer influence reactivity and stability in numerous heterogeneous catalysts. In this work, we use density functional theory (DFT) and statistical learning (SL) to derive models for predicting how the adsorption strength of metal atoms on MgO(100) surfaces can be enhanced by modifications of the support. MgO(100) in its pristine form is relatively unreactive, and thus is ideal for examining ways in which its electronic interactions with metals can be enhanced, tuned, and controlled. We find that the charge transfer characteristics of MgO are readily modified either by adsorbates on the surface (e.g., H, OH, F, and NO2) or dopants in the oxide lattice (e.g., Li, Na, B, and Al). We use SL methods (i.e., LASSO, Horseshoe prior, and Dirichlet–Laplace prior) that are trained against DFT data to identify physical descriptors for predicting how the adsorption energy of metal atoms will change in response to support modification. These SL-derived feature selection tools are used to screen through more than one million candidate descriptors that are generated from simple chemical properties of the adsorbed metals, MgO, dopants, and adsorbates. Among the tested SL tools, we demonstrate that Dirichlet–Laplace prior predicts metal adsorption energies on MgO most accurately, while also identifying descriptors that are most transferable to chemically similar oxides, such as CaO, BaO, and ZnO.

Publisher

Springer Science and Business Media LLC

Subject

Computer Science Applications,Mechanics of Materials,General Materials Science,Modeling and Simulation

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3