Na in diamond: high spin defects revealed by the ADAQ high-throughput computational database

Author:

Davidsson JoelORCID,Stenlund William,Parackal Abhijith S.,Armiento RickardORCID,Abrikosov Igor A.ORCID

Abstract

AbstractColor centers in diamond are at the forefront of the second quantum revolution. A handful of defects are in use, and finding ones with all the desired properties for quantum applications is arduous. By using high-throughput calculations, we screen 21,607 defects in diamond and collect the results in the ADAQ database. Upon exploring this database, we find not only the known defects but also several unexplored defects. Specifically, defects containing sodium stand out as particularly relevant because of their high spins and predicted improved optical properties compared to the NV center. Hence, we studied these in detail, employing high-accuracy theoretical calculations. The single sodium substitutional (NaC) has various charge states with spin ranging from 0.5 to 1.5, ZPL in the near-infrared, and a high Debye-Waller factor, making it ideal for biological quantum applications. The sodium vacancy (NaV) has a ZPL in the visible region and a potential rare spin-2 ground state. Our results show sodium implantation yields many interesting spin defects that are valuable additions to the arsenal of point defects in diamond studied for quantum applications.

Funder

Knut och Alice Wallenbergs Stiftelse

Vetenskapsrådet

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3