Machine learning method for tight-binding Hamiltonian parameterization from ab-initio band structure

Author:

Wang ZifengORCID,Ye ShizhuoORCID,Wang Hao,He JinORCID,Huang Qijun,Chang ShengORCID

Abstract

AbstractThe tight-binding (TB) method is an ideal candidate for determining electronic and transport properties for a large-scale system. It describes the system as real-space Hamiltonian matrices expressed on a manageable number of parameters, leading to substantially lower computational costs than the ab-initio methods. Since the whole system is defined by the parameterization scheme, the choice of the TB parameters decides the reliability of the TB calculations. The typical empirical TB method uses the TB parameters directly from the existing parameter sets, which hardly reproduces the desired electronic structures quantitatively without specific optimizations. It is thus not suitable for quantitative studies like the transport property calculations. The ab-initio TB method derives the TB parameters from the ab-initio results through the transformation of basis functions, which achieves much higher numerical accuracy. However, it assumes prior knowledge of the basis and may encompass truncation error. Here, a machine learning method for TB Hamiltonian parameterization is proposed, within which a neural network (NN) is introduced with its neurons acting as the TB matrix elements. This method can construct the empirical TB model that reproduces the given ab-initio energy bands with predefined accuracy, which provides a fast and convenient way for TB model construction and gives insights into machine learning applications in physical problems.

Publisher

Springer Science and Business Media LLC

Subject

Computer Science Applications,Mechanics of Materials,General Materials Science,Modelling and Simulation

Cited by 44 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3