Modelling charge transport and electro-optical characteristics of quantum dot light-emitting diodes

Author:

Jung Sung-MinORCID,Lee Tae Hoon,Bang Sang YunORCID,Han Soo Deok,Shin Dong-Wook,Lee Sanghyo,Choi Hyung Woo,Suh Yo-Han,Fan Xiang-Bing,Jo Jeong-Wan,Zhan Shijie,Yang Jiajie,Samarakoon Chatura,Kim Yoonwoo,Occhipinti Luigi G.ORCID,Amaratunga Gehan,Kim Jong MinORCID

Abstract

AbstractsQuantum dot light-emitting diodes (QD-LEDs) are considered as competitive candidate for next-generation displays or lightings. Recent advances in the synthesis of core/shell quantum dots (QDs) and tailoring procedures for achieving their high quantum yield have facilitated the emergence of high-performance QD-LEDs. Meanwhile, the charge-carrier dynamics in QD-LED devices, which constitutes the remaining core research area for further improvement of QD-LEDs, is, however, poorly understood yet. Here, we propose a charge transport model in which the charge-carrier dynamics in QD-LEDs are comprehensively described by computer simulations. The charge-carrier injection is modelled by the carrier-capturing process, while the effect of electric fields at their interfaces is considered. The simulated electro-optical characteristics of QD-LEDs, such as the luminance, current density and external quantum efficiency (EQE) curves with varying voltages, show excellent agreement with experiments. Therefore, our computational method proposed here provides a useful means for designing and optimising high-performance QD-LED devices.

Publisher

Springer Science and Business Media LLC

Subject

Computer Science Applications,Mechanics of Materials,General Materials Science,Modeling and Simulation

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3