Extracting bulk defect parameters in silicon wafers using machine learning models

Author:

Buratti YoannORCID,Le Gia Quoc Thong,Dick Josef,Zhu Yan,Hameiri Ziv

Abstract

AbstractThe performance of high-efficiency silicon solar cells is limited by the presence of bulk defects. Identification of these defects has the potential to improve cell performance and reliability. The impact of bulk defects on minority carrier lifetime is commonly measured using temperature- and injection-dependent lifetime spectroscopy and the defect parameters, such as its energy level and capture cross-section ratio, are usually extracted by fitting the Shockley-Read-Hall equation. We propose an alternative extraction approach by using machine learning trained on more than a million simulated lifetime curves, achieving coefficient of determinations between the true and predicted values of the defect parameters above 99%. In particular, random forest regressors, show that defect energy levels can be predicted with a high precision of ±0.02 eV, 87% of the time. The traditional approach of fitting to the Shockley-Read-Hall equation usually yields two sets of defect parameters, one in each half bandgap. The machine learning model is trained to predict the half bandgap location of the energy level, and successfully overcome the traditional approach’s limitation. The proposed approach is validated using experimental measurements, where the machine learning predicts defect energy level and capture cross-section ratio within the uncertainty range of the traditional fitting method. The successful application of machine learning in the context of bulk defect parameter extraction paves the way to more complex data-driven physical models which have the potential to overcome the limitation of traditional approaches and can be applied to other materials such as perovskite and thin film.

Funder

Australian Renewable Energy Agency

Australian Centre for Advanced Photovoltaics

Publisher

Springer Science and Business Media LLC

Subject

Computer Science Applications,Mechanics of Materials,General Materials Science,Modelling and Simulation

Reference53 articles.

1. IPCC. Global warming of 1.5 °C. An IPCC special report on the impacts of global warming of 1.5 °C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. In Masson-Delmotte, V. et al. (eds) (2018, In Press). https://archive.ipcc.ch/report/sr15/pdf/sr15_citation.pdf.

2. Green, M. A. Commercial progress and challenges for photovoltaics. Nat. Energy 1, 15015 (2016).

3. Needleman, D. B. et al. Economically sustainable scaling of photovoltaics to meet climate targets. Energy Environ. Sci. 9, 2122–2129 (2016).

4. Schmidt, J. et al. Impurity-related limitations of next-generation industrial silicon solar cells. In IEEE Journal of Photovoltaics vol. 3, pp. 114–118 (2013). https://doi.org/10.1109/JPHOTOV.2012.2210030.

5. Coletti, G. Sensitivity of state-of-the-art and high efficiency crystalline silicon solar cells to metal impurities. Prog. Photovolt. 21, 1163–1170 (2013).

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3