Center-environment deep transfer machine learning across crystal structures: from spinel oxides to perovskite oxides

Author:

Li Yihang,Zhu RuijieORCID,Wang YuanqingORCID,Feng Lingyan,Liu YiORCID

Abstract

AbstractIn data-driven materials design where the target materials have limited data, the transfer machine learning from large known source materials, becomes a demanding strategy especially across different crystal structures. In this work, we proposed a deep transfer learning approach to predict thermodynamically stable perovskite oxides based on a large computational dataset of spinel oxides. The deep neural network (DNN) source domain model with “Center-Environment” (CE) features was first developed using the formation energy of 5329 spinel oxide structures and then was fine-tuned by learning a small dataset of 855 perovskite oxide structures, leading to a transfer learning model with good transferability in the target domain of perovskite oxides. Based on the transferred model, we further predicted the formation energy of potential 5329 perovskite structures with combination of 73 elements. Combining the criteria of formation energy and structure factors including tolerance factor (0.7 < t ≤ 1.1) and octahedron factor (0.45 < μ < 0.7), we predicted 1314 thermodynamically stable perovskite oxides, among which 144 oxides were reported to be synthesized experimentally, 10 oxides were predicted computationally by other literatures, 301 oxides were recorded in the Materials Project database, and 859 oxides have been first reported. Combing with the structure-informed features the transfer machine learning approach in this work takes the advantage of existing data to predict new structures at a lower cost, providing an effective acceleration strategy for the expensive high-throughput computational screening in materials design. The predicted stable novel perovskite oxides serve as a rich platform for exploring potential renewable energy and electronic materials applications.

Publisher

Springer Science and Business Media LLC

Subject

Computer Science Applications,Mechanics of Materials,General Materials Science,Modeling and Simulation

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3