Toward nanoscale molecular mass spectrometry imaging via physically constrained machine learning on co-registered multimodal data

Author:

Borodinov Nikolay,Lorenz MatthiasORCID,King Steven T.,Ievlev Anton V.,Ovchinnikova Olga S.ORCID

Abstract

AbstractMass spectrometry imaging (MSI) plays a pivotal role in investigating the chemical nature of complex systems that underly our understanding in biology and medicine. Multiple fields of life science such as proteomics, lipidomics and metabolomics benefit from the ability to simultaneously identify molecules and pinpoint their distribution across a sample. However, achieving the necessary submicron spatial resolution to distinguish chemical differences between individual cells and generating intact molecular spectra is still a challenge with any single imaging approach. Here, we developed an approach that combines two MSI techniques, matrix-assisted laser desorption/ionization (MALDI) and time-of-flight secondary ion mass spectrometry (ToF-SIMS), one with low spatial resolution but intact molecular spectra and the other with nanometer spatial resolution but fragmented molecular signatures, to predict molecular MSI spectra with submicron spatial resolution. The known relationships between the two MSI channels of information are enforced via a physically constrained machine-learning approach and directly incorporated in the data processing. We demonstrate the robustness of this method by generating intact molecular MALDI-type spectra and chemical maps at ToF-SIMS resolution when imaging mouse brain thin tissue sections. This approach can be readily adopted for other types of bioimaging where physical relationships between methods have to be considered to boost the confidence in the reconstruction product.

Publisher

Springer Science and Business Media LLC

Subject

Computer Science Applications,Mechanics of Materials,General Materials Science,Modeling and Simulation

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3