Abstract
AbstractThe Fe–Sn-based kagome compounds attract intensive attention due to its attractive topological transport and rich magnetic properties. Combining experimental data, first-principles calculations, and Calphad assessment, thermodynamic and topological transport properties of the Fe–Sn system were investigated. Density functional theory (DFT) calculations were performed to evaluate the intermetallics’ finite-temperature heat capacity (Cp). A consistent thermodynamic assessment of the Fe–Sn phase diagram was achieved by using the experimental and DFT results, together with all available data from previous publications. Here, we report that the metastable phase Fe3Sn was introduced into the current metastable phase diagram, and corrected phase locations of Fe5Sn3 and Fe3Sn2 under the newly measured corrected temperature ranges. Furthermore, the anomalous Hall conductivity and anomalous Nernst conductivity of Fe3Sn were calculated, with magnetization directions and doping considered as perturbations to tune such transport properties. It was observed that the enhanced anomalous Hall and Nernst conductivities originate from the combination of nodal lines and small gap areas that can be tuned by doping Mn at Fe sites and varying magnetization direction.
Funder
German Physical Society via priority project SPP1666
Publisher
Springer Science and Business Media LLC
Subject
Computer Science Applications,Mechanics of Materials,General Materials Science,Modeling and Simulation
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献