Infrared-active phonons in one-dimensional materials and their spectroscopic signatures

Author:

Rivano Norma,Marzari NicolaORCID,Sohier Thibault

Abstract

AbstractDimensionality provides a clear fingerprint on the dispersion of infrared-active, polar-optical phonons. For these phonons, the local dipoles parametrized by the Born effective charges drive the LO-TO splitting of bulk materials; this splitting actually breaks down in two-dimensional materials. Here, we develop the theory for one-dimensional (1D) systems—nanowires, nanotubes, and atomic and polymeric chains. Combining an analytical model with the implementation of density-functional perturbation theory in 1D boundary conditions, we show that the dielectric splitting in the dispersion relations collapses as $${x}^{2}\log (x)$$ x 2 log ( x ) at the zone center. The dielectric properties and the radius of the 1D materials are linked by the present work to these red shifts, opening infrared and Raman characterization avenues.

Funder

Swiss National Science Foundation | National Center of Competence in Research Affective Sciences - Emotions in Individual Behaviour and Social Processes

Publisher

Springer Science and Business Media LLC

Subject

Computer Science Applications,Mechanics of Materials,General Materials Science,Modeling and Simulation

Reference52 articles.

1. Ziman, J. M. Electrons and phonons: the theory of transport phenomena in solids (Oxford university press, 2001).

2. Ashcroft, N. W. & Mermin, N. D. Solid State Physics (Holt, Rinehart and Winston, New york London, 1976).

3. Sohier, T., Gibertini, M., Calandra, M., Mauri, F. & Marzari, N. Breakdown of optical phonons’ splitting in two-dimensional materials. Nano Lett. 17, 3758–3763 (2017).

4. Royo, M. & Stengel, M. Exact long-range dielectric screening and interatomic force constants in quasi-two-dimensional crystals. Phys. Rev. X 11, 041027 (2021).

5. Mele, E. & Král, P. Electric polarization of heteropolar nanotubes as a geometric phase. Phys. Rev. Lett. 88, 056803 (2002).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3