Symmetry-driven half-integer conductance quantization in Cobalt–fulvalene sandwich nanowire

Author:

Jiang Zhuoling,Yam Kah-MengORCID,Ang Yee SinORCID,Guo Na,Zhang Yongjie,Wang Hao,Zhang ChunORCID

Abstract

AbstractPrecise manipulation and monitoring spin transport in one-dimensional (1D) systems is a long-sought goal in the field of nano-spintronics. Based on first-principles calculations, we report the observation of half-integer conductance quantization in the Cobalt-fulvalene sandwich nanowire. Compared with a pure monatomic Cobalt wire, the introduction of fulvalene molecules leads to three important features: Firstly, the strong coupling between the fulvalene and the Cobalt prevents the contamination of the ambient air, ensuring both chemical and physical stabilities; Secondly, the fulvalene symmetry-selectively filters out most of the d-type orbitals of the Cobalt while leaving a single d-type orbital to form an open spin channel around the Fermi level, which offers a mechanism to achieve the observed half-integer conductance; Thirdly, it maintains a superexchange coupling between adjacent Co atoms to achieve a high Curie temperature. Spin transport calculations show that this half-metallic nanowire can serve as a perfect spin filter or a spin valve device, thus revealing the potential of Cobalt-fulvalene sandwich nanowire as a promising building block of high-performance spintronics technology.

Funder

Singapore Ministry of Education (MOE) Academic Research Fund (ArRF) Tier 2 Grant

Publisher

Springer Science and Business Media LLC

Subject

Computer Science Applications,Mechanics of Materials,General Materials Science,Modeling and Simulation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3